Contoh Soal Ulangan Relasi dan Fungsi Beserta Jawabannya

Contoh Soal Ulangan Relasi dan Fungsi Beserta Jawabannya

Contoh Soal Ulangan Relasi dan Fungsi Beserta Jawabannya

Contoh Soal Ulangan Relasi dan Fungsi Beserta Jawabannya
Contoh Soal Ulangan Relasi dan Fungsi Beserta Jawabannya

1. Pada pemetaan    bayangan dari 2 adalah …

a.  3                                    b.  8                                   c.  9                                  d.  27
Pembahasan :
f(x) = 4x – 5
f(2) = 4(2) – 5
f(2) = 8 – 5 = 3

2. Pada pemetaan     maka h(5)  adalah …

a.  33                                 b. 29                                  c. 21                               d. 17
Pembahasan :
h(x) = x^2 + 4
h(5) = 5^2 + 4
h(5) = 25 + 4 = 29

3. Pada pemetaan  f : 5 – x,  jika daerah asalnya {-3, -2, -1, 0. 1, 2, 3, 4}, maka daerah hasilnya adalah …

a.  {–1, –2, –3,  –4, –5, –6, –7, –8}                                     c.  {1, 2, 3, 4, 5, 6, 7, 8}
b.  {–2, –3,  –4, –5, –6, –7, –8, –9}                                    d.  {2, 3, 4, 5, 6, 7, 8, 9}
Pembahasan :
f(-3) = 5 – (-3) = 8                    f(1) = 5 – 1 = 4
f(-2) = 5 – (-2) = 7                    f(2) = 5 – 2 = 3
f(-1) = 5 – (-1) = 6                    f(3) = 5 – 3 = 2
f(0)   = 5 – 0       = 5                     f(4) = 5 – 4 = 1
Daerah Hasilnya = {1, 2, 3, 4, 5, 6, 7, 8}

4. Pada pemetaan  jika daerah asalnya {x | x < 5, x Î bilangan asli }, maka daerah hasilnya adalah …

a. {–4, –8, –12, –16, –20}                                                  c. {4, 8, 12, 16, 20}
b. {–8, –12, –16, –20, – 22}                                              d. {8, 12, 16, 20, 22}
Pembahasan :
x = {1, 2, 3, 4, 5}
f(1) = 4(1) = 4             f(4) = 4(4) = 16
f(2) = 4(2) = 8             f(5) = 4(5) = 20
f(3) = 4(3) = 12
daerah hasilnya = {4, 8, 12, 16, 20}
5. Pada pemetaan    jika daerah asalnya x Î {2, 3, 4, 5 },  rangenya adalah …
a. {4, 11, 14, 15}                                                              c.  {6, 11, 14, 17}
b.  {6, 11, 14, 15}                                                            d.  {8, 11, 14, 17}
Pembahasan :
f(2) = 3(2) + 2 = 8                f(4) = 3(4) + 2 = 14
f(3) = 3(3) + 2 = 11             f(5) = 3(5) + 2 = 17
Daerah hasilnya = {8, 11, 14, 17}
6. Fungsi f dinyatakan dengan rumus f(x) = px + q, jika f(0) = –2 dan f(2) = 4, maka nilai p dan q berturut-turut adalah …
a. 2  dan  –5                        b. – 2 dan 5                  c. 2 dan –3                      d. –2 dan 3
Pembahasan :
f(0) = -2  →    p(0) + q = -2   →    q = -2
f(2) = 4
p(2) + q = 4
2p + (-2) = 4
2p – 2 = 4←
2p =4 + 2 p = 6/2 = 3
7. Dari tabel di bawah ini, himpunan pasangan berurutannya adalah ….
   lelawati pasma keru
a.  {(0, -1), (1, 1), (2, 3), (3, 5), (4, 7)}
b.  {(0, 1), (1, 1), (2, 3), (3, 5), (4, 7)}
c.  {(-1, 1), (1, 1), (3, 2), (5, 3), (7, 4)}
d. {(1, -1), (1, 1), (3, 2), (5, 3), (7, 4)}
Pembahasan :
Himpunan Pasangan berurutannya:
{(0, -1), (1, 1), (2, 3), (3, 5), (4, 7)}
8. Dari tabel fungsi f(x) = 3x – 2, rangenya adalah …..
lelawati pasma keru
a. {(2, -8), (-1, -5), (0, -2), (1, 1), (2, 4), (3, 7)}
b.  {(2, 8), (-1, 5), (0, -2), (1, 1), (2, 4), (3, 7)}
c. {(-8, -2), (-5, -1), (-2, 0), (1, 1), (4, 2), (7, 3)}
d. {(8, -2), (5, -1), (-2, 0), (1, 1), (4, 2), (7, 3)}
Pembahasan :
Range : {(2, -8), (-1, -5), (0, -2), (1, 1), (2, 4), (3, 7)}
9. Diketahui fungsi f : x —> ax – 7 dan f(5) = 18, maka nilai a adalah …
a. 5                                        b. 6                                   c. 7                                     d. 8
Pembahasan :
f(5) = 18
5a – 7  = 18
5a = 18 + 7
5a = 25,     maka a = 5
10. Diketahui fungsi f : x —> 3x – 11 dan f(a) = –20, maka nilai a adalah …
a. – 3                                     b. – 4                               c. – 5                                  d. – 6
Pembahasan :
f(a)        =  -20
3a – 11 = -20
3a           = -20 + 11   →   3a  = -9 → a = -3
11. Pada pemetaan f : x —> 3x + 2, jika f :(a )→ 38,  maka nilai a adalah …
a.  18                                    b. 16                                c. 12                                  d. 10
Pembahasan :
f(a)      = 38
3a + 2 = 38
3a        = 38 – 2
3a        = 36  —> a = 12
12. Diketahui fungsi , jika f( a) —>  4, maka nilai a adalah …
a. 4                                       b. 5                                    c.  6                                    d. 7
Pembahasan :
<—> x + 3  = 2.4
<—> x  + 3 = 8
<—>          x = 8 – 3 = 5
13. Diketahui fungsi , jika f(a) = 10, maka nilai a adalah …
a. 22                                     b. 21                                c. 20                                  d. 19
Pembahasan :
<—> 2a – 12 =  3.10
<—> 2a           = 30 + 12
<—> 2a           = 42 —-> a = 21
14.  Diketahui fungsi f(x) = ax – b, sedangkan f(3) = 4 dan f(–5) = –28, maka nilai a dan b berturut-turut adalah …
a. –3 dan 8                        b. 3 dan – 8                   c. 4 dan 8                        d. 4 dan – 8
Pembahasan :
f(3)      = 4                     f(-5)      = -28
3a – b  = 4 …..1)          -5a – b = -28 …..2)
Eliminasi b dari pers. 1 dan 2
3a – b  = 4
5a + b = 28
________________ +
8a        = 32
a           = 4
Substitusikan a = 4 ke persamaan 1) :
3(4) – b = 4
12  – b    = 4
– b           = 4 – 12 —> b = 8
15.  Fungsi f dinyatakan dengan rumus f(x) = ax + b, jika f(2) = 13 dan f(5) = 22, maka nilai a dan b berturut-turut adalah …
a. –4 dan 5                       b. 4 dan – 5                   c. 3 dan 7                        d. 3 dan – 7
Pembahasan :
f(2)      = 13                    f(5)      = 22
2a + b = 13  ….. 1)        5a + b = 22 …. 2)
Eliminasi b dari persamaan 1 dan 2
  2a + b = 13
-5a – b = -22
_________________ +
-3a = -9
a      = 3
Substitusikan a = 3 ke persamaan 1) :
2(3) + b = 13
6 + b       = 13  —-> b = 13 – 6 = 7
16.  Fungsi f dinyatakan dengan rumus h(x) = px + q, jika h(–6) = 32 dan h(4) = –8, maka nilai p dan q berturut-turut adalah …
a. –2 dan 9                     b. 2 dan – 8                     c. 6  dan –4                     d. –4 dan 8
Pembahasan :
h(-6)   = 32                         h(4)     = -8
-6p + q = 32  ….. 1)          4p + q = -8 …. 2)
Eliminasi b dari persamaan 1 dan 2
 -6p + q = 32
 -4p – q = 8
_________________ +
-10p = 40
p         = -4
Substitusikan  p = -4 ke persamaan 1) :
-6(-4) + q = 32
24 + q          = 32  —-> q = 32 – 24 = 8
17. Diketahui fungsi f(x) = ax – b, sedangkan f(3) = 7 dan f(–5) = –25, maka rumus fungsi f(x) adalah …
a. f(x) = 3x +5              b. f(x) = 3x – 5               c. f(x) = 4x + 5              d. f(x) = 4x – 5
Pembahasan :
f(3)      = 7                            f(-5) = -25
3a – b = 7  ….. 1)           -5a – b = -25 …. 2)
Eliminasi b dari persamaan 1 dan 2
3a – b = 7
5a + b = 25
_________________ +
8a = 32
a    = 4
Substitusikan  a = 4 ke persamaan 1) :
3(4) – b = 7
12 – b     = 7  —-> -b = 7 – 12 = 5
Rumus fungsi f(x) = 4x – 5
18.  Fungsi f dinyatakan dengan rumus f(x) = ax + b, jika f(2) = 13 dan f(5) = 22, maka rumus fungsi f(x) adalah …
a. f(x) = 3x + 7            b. f(x) = 3x – 7                c.  f(x) = 2x + 5              d. f(x) = 2x – 5
Pembahasan :
f(2)      = 13                  f(5)      = 22
2a + b = 13  ….. 1)      5a + b = 22 …. 2)
Eliminasi b dari persamaan 1 dan 2
  2a + b = 13
-5a – b = -22
_________________ +
-3a        = -9
a              = 3
Substitusikan a = 3 ke persamaan 1) :
2(3) + b = 13
6 + b       = 13  —-> b = 13 – 6 = 7
Rumus funfsi f(x) = 3x + 7
19.  Fungsi f dinyatakan dengan rumus h(x) = px + q, jika h(–6) = 32 dan h(4) = –8, maka rumus fungsi h(x) adalah …
a. f(x) = – 5x + 8        b. f(x) = –5x  – 8             c. f(x) = – 4x + 8             d. f(x) = –4x  – 8
Pembahasan :
h(-6)   = 32                     h(4)    = -8
-6p + q = 32  ….. 1)      4p + q = -8 …. 2)
Eliminasi b dari persamaan 1 dan 2
 -6p + q = 32
 -4p – q = 8
_________________ +
-10p      = 40
p             = -4
Substitusikan  p = -4 ke persamaan 1) :
-6(-4) + q = 32
24 + q          = 32
q                    = 32 – 24 = 8
Jadi rumus fungsi f(x) = -4x + 8
20. Nilai a, b dan c dari tabel  f(x) = 2x + 2, berturut-turut adalah …
a. [2, 4, 6}                          b. [2, 6, 8}                          c. [4, 6, 8}                     d. [4, 8, 10}
Pembahasan :
f(0) = 2(0) + 2  →  a     = 2
f(2) = 2(2) + 2→ b      = 6
f(3) = 2(3) + 2
   c    = 8   —–> maka nilai a, b, dan c = [2, 6, 8]
21.    Diketahui A = {1, 2, 3, 4} dan B = {a, b, c, d}
a.     Tulislah himpuanan pasangan berurutan yang menunjukkan korespondensi satu-satu dari A ke B !
b.    Berapakan banyak koresponden satu-satu dari A ke B ?
    Pembahasan :
    a. {(1, a), (2, b), (3, c), (4, d)}    b.   (1 x 2 x 3 x 4) = 24
22.    Fungsi f dinyatakan dengan rumus f(x) = ax + b, jika f(2) = 13 dan f(5) = 22.
Tentukan :
a.      Nilai a dan b
b.     rumus fungsi f(x)
c.     Tentukan nilai f(10)
    Pembahasan :
    a.  f(x) = ax + b, jika f(2) = 13 maka :
f(2) = 2a + b → 2a + b = 13 … 1)    f(x) = ax + b, jika f(5) = 22 maka :
f(5) = 5a + b  →  5a + b = 22 … 2)
    Eliminasi b dari pers. 1) dan 2)
2a + b = 13
5a + b = 22 –
−3a     = −9→a = 3
Substitusikan a = 3 ke pers.  1)
2a + b = 13 →2(3) + b = 13
 6 + b = 13  →b = 7
 →   b. Substitusikan a = 3 dan b = 7 ke fungsi f,
 maka rumus fungsi menjadi : f(x) = 3x + 7
c. f(x)     = 3x + 7, jika f(10) maka :
f(10)  = 3(10) + 7
= 30 + 7 = 37
23.    Fungsi f dinyatakan dg rumus h(x) = px + q, jika h(–6) = 32 dan h(4) = –8,
Tentukan :
a. Nilai p dan q                        b.  rumus fungsi h(x)                   c. nilai h(−2)
    Pembahasan :
    a.  h(x) = px + q, jika h(−6) = 32 maka :
h(−6) = −6p + q →−6p + q = 32 … 1)    h(x) = px + q, jika h(4) = −8 maka :
h(4) = 4p + q →4p + q = −8 … 2)
    Eliminasi q dari pers. 1) dan 2)
−6p + q = 32
4p + q = −8 –
−10p     = 40  →p = −4
Substitusikan p = −4 ke pers.  1)
−6p + q = 32 → −6(−4)  + q = 32
→ 24 + q = 32→q = 32 – 24 = 8
    b. Substitusikan p = −4 dan q = 8 ke fungsi h, maka rumus fungsi menjadi : h(x) = −4x + 8
c. h(x)    = −4x + 8, jika h(−2) maka :
h(−2) = 3(−2) + 8 = −6 + 8 = 2
b. Substitusikan p = −4 dan q = 8 ke fungsi h, maka rumus fungsi menjadi : h(x) = −4x + 8
c. h(x)    = −4x + 8, jika h(−2) maka :
h(−2) = 3(−2) + 8 = −6 + 8 = 2